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Nöthnitzer Str. 38, D-01187 Dresden, Germany
Center for Research and Applications of Nonlinear Systems,

University of Patras, GR-26500 Patras, Greece
hskokos@pks.mpg.de

Received April 15, 2011; Revised June 28, 2011

We study the problem of efficient integration of variational equations in multidimensional
Hamiltonian systems. For this purpose, we consider a Runge–Kutta-type integrator, a Taylor
series expansion method and the so-called “Tangent Map” (TM) technique based on symplectic
integration schemes, and apply them to the Fermi–Pasta–Ulam β (FPU-β) lattice of N nonlin-
early coupled oscillators, with N ranging from 4 to 20. The fast and accurate reproduction of
well-known behaviors of the Generalized Alignment Index (GALI) chaos detection technique is
used as an indicator for the efficiency of the tested integration schemes. Implementing the TM
technique — which shows the best performance among the tested algorithms — and exploiting
the advantages of the GALI method, we successfully trace the location of low-dimensional tori.
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1. Introduction

From interactions of stars in galaxies to particle
beams in high energy accelerators, Hamiltonian
mechanics is found at the very heart of modeling
and understanding dynamical processes. The neces-
sity to classify evermore complex systems in terms

of stability and predictability has lead to a wealth of
methods discriminating chaotic from regular behav-
ior (see for example [Skokos, 2010, Sec. 7]). Most of
these techniques rely on the study of the time evolu-
tion of deviation vectors of a given orbit to discrim-
inate between the two regimes. The time evolution
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of these vectors is governed by the so-called varia-
tional equations.

In [Skokos & Gerlach, 2010] the ‘Tangent Map’
(TM) technique, an efficient and easy to imple-
ment method for the integration of the varia-
tional equations of Hamiltonian systems based on
the use of symplectic integrators was introduced.
In [Skokos & Gerlach, 2010; Gerlach & Skokos,
2011] the TM method was applied mainly to low-
dimensional Hamiltonian systems of two and three
degrees of freedom, and proved to be very efficient
and superior to other commonly used numerical
schemes, both with respect to its accuracy and its
speed.

The scope of the present work is to extend
these results by investigating whether the efficiency
of the TM method persists also when multidimen-
sional Hamiltonian systems are considered. The
study of such systems presents a challenging numer-
ical task, which makes the use of fast and accurate
numerical tools imperative. In the present paper,
we use as a toy model the famous Fermi–Pasta–
Ulam β (FPU-β) lattice, which is presented in
Sec. 2. In Sec. 3 the different numerical meth-
ods we use, i.e. the Generalized Alignment Index
(GALI) chaos indicator, the TM method and the
SABA family of symplectic integrators, the Taylor
series integrator TIDES, and the general-purpose
high-accuracy Runge–Kutta integrator DOP853,
are presented and their properties are briefly dis-
cussed. Then, in Sec. 4.1, the numerical results
of the application of these numerical schemes for
the integration of variational equations of the
FPU-β system are presented, while in Sec. 4.2 the
GALI method is used for locating motion on low-
dimensional tori. Finally, in Sec. 5 we summarize
our results.

2. The FPU-β Lattice

As a model of a multidimensional Hamiltonian sys-
tem, we consider the FPU-β lattice [Fermi et al.,
1955; Ford, 1992; Campbell et al., 2005], which
describes a chain of N particles with nearest neigh-
bor interaction. Regarding numerical integration
algorithms, the FPU-β lattice is a very challeng-
ing problem, since it exhibits oscillations on largely
different time scales. The Hamiltonian of this N
degrees of freedom (ND) system as a function of
the momenta p = (p1, . . . , pN ) and the coordinates
q = (q1, . . . , qN ) is given by

HN = HN (p,q)

=
N∑

i=1

p2
i

2
+

N∑
i=0

[
(qi+1 − qi)2

2
+

β(qi+1 − qi)4

4

]
.

(1)

In our study we impose fixed boundary conditions,
i.e. q0 = qN+1 = 0, set β = 1.5, and consider mod-
els whose number of particles vary from N = 4 up
to N = 20. We note that in [Skokos et al., 2008;
Skokos & Gerlach, 2010] the particular case N = 8
was studied in detail.

The Hamiltonian (1) can be split into two parts
A and B, which respectively depend only on the
momenta and the coordinates, i.e. HN = A(p) +
B(q). The Hamilton’s equations of motion are

q̇i =
∂HN

∂pi
= pi and

ṗi = −∂HN

∂qi
= (qj+1 − qj)(δi

j − δi
j+1)

+ β(qj+1 − qj)3(δi
j − δi

j+1),

(2)

with 1 ≤ i ≤ N , and δi
j denoting the Kronecker

delta, which is equal to 1 if i = j and to 0 other-
wise. The variational equations governing the time
evolution of a deviation vector w = (δq1, . . . , δqN ,
δp1, . . . , δpN ), that evolves in the tangent space of
the Hamiltonian’s phase space are given by

δ̇pi = δqi and δ̇qi = −
N∑

j=1

∂2HN

∂qi∂qj
δqj. (3)

3. Numerical Methods

In order to compute the stability of a particular
solution of Hamiltonian (1), or in other words of
an orbit in the 2N -dimensional phase space of the
system, the equations of motion have to be inte-
grated together with the variational equations. The
time evolution of the latter contains information
on the stability of the orbit, which can be quanti-
fied by using some chaos indicator, for example the
GALIs. Different numerical approaches can be used
to solve the system of ordinary differential equa-
tions given by Eqs. (2) and (3). In this section,
after briefly recalling the definition of the GALI
and its behavior for regular and chaotic motion, we
present an overview of the methods used in the cur-
rent study. A more detailed description of further
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possibilities based on symplectic methods can be
found in [Skokos & Gerlach, 2010].

3.1. The Generalized Alignment
Index (GALI )

The GALI was originally introduced in [Skokos
et al., 2007] as an efficient chaos detection method,
generalizing a similar indicator called the Smaller
Alignment Index (SALI) [Skokos, 2001; Skokos
et al., 2003, 2004]. The method has been applied
successfully to different dynamical systems for the
discrimination between regular and chaotic motion,
as well as for the detection of regular motion on low-
dimensional tori [Christodoulidi & Bountis, 2006;
Skokos et al., 2008; Bountis et al., 2009; Manos &
Ruffo, 2011; Manos & Athanassoula, 2011; Manos
et al., 2012].

For ND Hamiltonians the Generalized Align-
ment Index of order k (GALIk), 2 ≤ k ≤ 2N , is
determined through the evolution of k initially lin-
early independent deviation vectors wk(0), which
are continually normalized, keeping their directions
intact. According to Skokos et al. [2007] GALIk is
defined as the volume of the k-parallelepiped hav-
ing the k unitary deviation vectors ŵi(t) = wi(t)/
‖wi(t)‖, i = 1, 2, . . . , k, as edges. GALIk is there-
fore determined through the wedge product of these
vectors

GALIk(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)‖, (4)

with ‖ · ‖ denoting the usual norm. The behavior
of GALIk for regular motion on an s-dimensional
torus, and for randomly chosen, linearly indepen-
dent initial deviation vectors, is given by [Skokos
et al., 2007; Christodoulidi & Bountis, 2006; Skokos
et al., 2008]

GALIk(t) ∝




const if 2 ≤ k ≤ s

1
tk−s

if s < k ≤ 2N − s

1
t2(k−N)

if 2N − s < k ≤ 2N

,

(5)

while for chaotic orbits GALIk tends to zero expo-
nentially following the law [Skokos et al., 2007]

GALIk(t) ∝ e−[(σ1−σ2)+(σ1−σ3)+···+(σ1−σk)]t, (6)

where σ1, . . . , σk are the first k largest Lyapunov
characteristic exponents of the orbit. Further details
on the behavior of GALIs for particular choices of
initial conditions and deviation vectors can be found
in [Skokos et al., 2007; Manos et al., 2012].

We chose to apply the GALI method in order
to check the accuracy of the numerical integration
of variational equations because this index depends
on the evolution of an ensemble of deviation vec-
tors. Thus, even small errors in the integration of
these vectors are expected to significantly influence
the evolution of GALIs. In particular, we focus our
attention on regular orbits lying on tori of various
dimensions s, for which the GALIs exhibit differ-
ent evolutions depending on s and the order k of
the index. The possible deviations of numerically
evaluated GALIs from their expected behaviors (5)
will identify the inaccurate integration of the devi-
ation vectors far better than it would be the case
using chaotic orbits, for which all GALIs tend to
zero exponentially (6). Throughout the paper, we
denote regular orbits on an s-dimensional torus of
the ND system (1) as T N

s , where s can range from
2 to N .

3.2. The Tangent Map method
using symplectic algorithms

Symplectic methods are often the preferred choice
when integrating dynamical problems, which can
be described by Hamiltonian functions. A thorough
discussion of such methods can be found in [Hairer
et al., 2002]. Let us just mention some properties
of symplectic integrators which are of interest for
our study. Symplectic methods cannot be used with
a trivial automated step size control. As a conse-
quence, they are usually implemented with a fixed
integration step τ . Due to their special structure,
they preserve the symplectic nature of Hamilton’s
equations intrinsically, which in turn leads to results
that are more robust for long integration times. A
side-effect of structure preservation is that the error
in energy remains bounded irrespective of the total
integration time.

In [Skokos & Gerlach, 2010] it was shown
that it is possible to integrate the Hamilton’s
equations of motion and the corresponding vari-
ational equations using the TM technique based
on symplectic splitting methods. Let us outline
the basic idea behind the TM method, which is
founded on a general result stated for example in
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[Laskar & Robutel, 2001]: Symplectic integrators
can be applied to systems of first order differen-
tial equations Ẋ = LX, that can be written in the
form Ẋ = (LA + LB)X, where L,LA, LB are dif-
ferential operators defined as Lχf = {χ, f} and for
which the two systems Ẋ = LAX and Ẋ = LBX
are integrable. Here {f, g} are Poisson brackets of
functions f(q,p), g(q,p) defined as:

{f, g} =
N∑

l=1

(
∂f

∂pl

∂g

∂ql
− ∂f

∂ql

∂g

∂pl

)
. (7)

The set of Eqs. (2) is one example of such a system,
since the Hamiltonian (1) can be divided into two
integrable parts A and B with H = A(p) + B(q)
as already noted. A symplectic splitting method
separates the equations of motion (2) into several
parts, applying either the operator LA or LB . These
are the equations of motion of the Hamiltonians
A and B, which can be solved analytically, giv-
ing explicit mappings over the time step ciτ , where
the constants ci are chosen to optimize the accu-
racy of the integrator. These mappings can then be
combined to approximate the solution for a time
step τ . In [Skokos & Gerlach, 2010] it was shown
that the derivatives of these mappings with respect
to the coordinates and momenta of the system (the
so-called tangent maps) can be used to calculate
the time evolution of deviation vectors or, in other
words, solve the variational equations (3).

In [Laskar & Robutel, 2001] a family of sym-
plectic splitting methods called SABAn and SBABn

was introduced, with n being the number of appli-
cations of operators LA and LB . These integrators

were designed to have only positive intermediate
steps. Since it is not possible to construct sym-
plectic integrators of order1 > 2 with this property
[Suzuki, 1991], small negative corrector steps C can
be added before and after the main body of the inte-
grator to further increase the accuracy. In Sec. 4.1
we test three different integrators, namely SABA2,
SABA2C and SBAB2C, present the results of this
comparison and discuss the characteristics of these
algorithms when applied to the FPU-β system.

The fact, that standard adaptive stepping pol-
icy is not possible with symplectic integration
schemes necessitates an initial assessment of sta-
bility for the algorithms used, in order to derive an
upper bound on the choice of step-size. Following
Hairer et al. [2002] we note that SBAB1 is equiva-
lent to the well known Størmer–Verlet or leap-frog
method, and SABA1 to its adjoint. In order to per-
form a linear stability analysis of the FPU-β lat-
tice problem for SABA2, we introduce normal mode
momenta Pk and coordinates Qk as it was done for
example in [Skokos et al., 2008]. The unperturbed
(β = 0) Hamiltonian (1) can then be written as a
sum of the so-called harmonic energies Ek, i.e.

HN =
N∑

k=1

Ek =
N∑

k=1

1
2
(
P 2

k + ω2
kQ

2
k

)
,

ωk = 2 sin
(

kπ

2(N + 1)

)
,

(8)

where ωk are the corresponding harmonic frequen-
cies. With Mk denoting the Jacobian of the numer-
ical mapping from initial coordinates and momenta
to those at the next step for SABA2 we have

[
Qk(τ)

Pk(τ)

]
= Mk

[
Qk(0)

Pk(0)

]

Mk =


1 − τ2ω2
k

(
1
2

+
1

4
√

3

)
− τ4ω4

k

(
1
48

+
1

16
√

3

)
τ − τ3ω2

k

8
√

3

τω2
k

(
−1 +

1
2
√

3

)
+ τ3ω4

k

(
1
4
− 1

4
√

3

)
+ τ5ω6

k

(
1
48

− 1
24

√
3

)
1 − τ2ω2

k

(
1
2

+
1

4
√

3

)
− τ4ω4

k

(
1
48

+
1

16
√

3

)


.

1In this work we call a symplectic integrator to be of order n, if it introduces an error of O(τn) in the approximation of the
real solution, with τ being the integration time step.
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The characteristic polynomial of matrix Mk

amounts to λ2+λ(−2+τ2ω2
k−

τ2ω2
k

2
√

3
+ τ4ω4

k
24 − τ4ω4

k

8
√

3
)+1.

For the eigenvalues to be of modulus one, given
the harmonic frequencies (8) satisfy |ωk| ≤ 2, the
maximum admissible step size for SABA2 will be
τmax � 1.6. Thus, in our study we always use
τ < τmax.

3.3. Taylor series methods —
TIDES

The basic idea of the so-called Taylor series method
is to approximate the solution at time ti + τ of a
given d-dimensional initial value problem

dX(t)
dt

= f(X(t)), X ∈ R
d, t ∈ R (9)

from the nth degree Taylor series of X(t) at t = ti:

X(ti + τ) � X(ti) + τ
dX(ti)

dt
+

τ2

2!
d2X(ti)

dt2
+ · · ·

+
τn

n!
dnX(ti)

dtn
. (10)

For details see e.g. [Hairer et al., 1993, Sec. I.8] and
references therein. In this work we call an integrator
being of order n, when the first neglected term in
this Taylor series expansion is of O(τn+1). The com-
putation of the derivatives can be very cumbersome,
depending on the structure of f , and is done effi-
ciently using automatic differentiation techniques
(see e.g. [Barrio, 2005]).

In [Gerlach & Skokos, 2011] two different
publicly available implementations of the Taylor
method were used and compared regarding their
reliability and efficiency in the case of a 2D Hamil-
tonian system. One of these integrators, called
TIDES2 [Barrio, 2005; Abad et al., 2010], which
showed better performance, will also be used in this
work as a representative of methods based on Taylor
series expansions. TIDES comes as a Mathematica
notebook. After inserting the differential equations
one desires to integrate, the notebook generates
automatically all the necessary subroutines to com-
pute the given problem. The FORTRAN code pro-
duced by TIDES was included into the existing
testbed of our work without further modification.

In order to obtain optimal results, the TIDES
algorithm is free to choose its order and step size

during the whole integration interval. We used one
parameter only, the so-called one-step accuracy δ,
to control the numerical performance of the algo-
rithm. To be more precise, an integration step from
time ti to ti + τ is accepted, if the internal accuracy
checks estimate that the local truncation error of
the solution X(ti + τ) is less than δ. If this error is
larger than δ, the integrator automatically tries to
increase the internal order and/or adjust the step
size τ . After each successful step the deviation vec-
tors are renormalized.

Let us remark that another elegant way to
express Eq. (10) can be achieved using the so-
called Lie series formalism. Lie series have been
rediscovered by [Gröbner, 1967] and used exten-
sively in the field of dynamical astronomy (e.g.
[Hanslmeier & Dvorak, 1984; Delva, 1984]) to
numerically solve ordinary differential equations.
Sharing the same ansatz with symplectic maps
(Sec. 3.2), Lie series can be used to iterate first order
ordinary differential equations of the form Ẋ = LX
as follows:

Xt+τ = eLXt =
n∑

j=0

(τL)j

j!
Xt + O(τn+1). (11)

Note that contrary to Sec. 3.2, no assumptions on
the properties of the differential operator are made.
Thus, by evaluating the consecutive derivatives LX,
L2X, L3X and building the corresponding expo-
nential series up to order n one is able to follow
the trajectory of X through phase space. The trun-
cated Lie series’ numerical map Xt → Xt+τ is
not area-preserving, in general, since the method
is nonsymplectic. Therefore, the implementation of
an adaptive step size into Lie series algorithms is
possible without reservations. This can be achieved
via estimates on the size of the remainder of the
exponential series (see for example [Eggl & Dvorak,
2010]).

Algorithms using series expansions become
most efficient when combined with recursion rela-
tions, where higher order derivatives can be calcu-
lated from previous ones. In the course of this work,
extensive tests have also been undertaken to adapt
the Lie series method to the FPU-β lattice. Since
for this problem such recursions are not available,
we used algebraic manipulation software to com-
pute the successive applications of the operator L

2Freely available at http://gme.unizar.es/software/tides.
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to Xt, and implemented the generated code into a
FORTRAN program. Since this approach proved to
be reliable but computationally very expensive, we
do not include it in the discussion of our results in
Sec. 4.

3.4. General purpose integrators —
DOP853

In general, the computation of higher deriva-
tives of functions X(t) soon becomes very compli-
cated. Therefore, the methods described in Sec. 3.3
became popular only recently, after automatic dif-
ferentiation could be performed efficiently by com-
puters. Before that, other methods were developed
to approximate Eq. (10). One of these are the
so-called Runge–Kutta methods (see for example
[Hairer et al., 1993, Sec. II.1.1]). An s-stage Runge–
Kutta method is given as

X(ti + τ)

= X(ti) + τ

s∑
i=1

biki

with ki = f


ti + ciτ,X(ti) + τ

s∑
j=1

aijkj




and ci =
s∑

j=1

aij . (12)

The real numbers bi, aij with i, j = 1, . . . , s are cho-
sen to approximate Eq. (10) to the desired order.
If one requires further aij = 0 for i ≤ j the inte-
gration method will be explicit. Runge–Kutta inte-
grators exist as symplectic as well as nonsymplectic
variants.

In this work a 12-stage explicit Runge–Kutta
integration method called DOP853 is used.3 This
nonsymplectic scheme is based on the method
of Dormand and Price (see [Hairer et al., 1993,
Sec. II.5] for further details). With this integra-
tor, we solve the set of differential equations com-
posed of Eqs. (2) and (3) simultaneously. Here, we
use again the parameter δ to control the integra-
tor’s overall behavior. For the DOP853 integrator
the estimation of the local error and the step size
control is based on embedded formulas of orders 5
and 3.

4. Results

Before investigating how variational equations can
be integrated efficiently, one should first clarify the
meaning of the term “efficiency”. On the one hand,
an efficient integration is one that is performed
as fast as possible, and on the other hand, this
computation should be also done as accurately as
possible. Since accuracy always comes at the cost
of intense computational efforts — meaning large
CPU times — it tends to contradict the first men-
tioned aspect of efficiency. In addition, since we are
especially interested in the computation of chaos
indicators, an accurate computation should imply
the correct distinction between regular and chaotic
orbits of the studied dynamical system. Thus, in
this work, we consider the integration of varia-
tional equations to be efficient, when the com-
puted GALIs are obtained with the least-possible
CPU time requirements, achieving at the same time
the correct characterization of orbits as regular or
chaotic.

In the next section, we present a thorough dis-
cussion of how variational equations can be inte-
grated numerically using the methods described
in Sec. 3. We explain possibilities of estimating
the accuracy of such computations and discuss the
obtained results with respect to our definition of
efficiency. In Sec. 4.2, we apply this knowledge for
a more global investigation of the properties of the
FPU-β lattice. As a final remark we note that all
presented computations were performed on an Intel
Xeon X3470 with 2.93 GHz, using extended preci-
sion (80 bit).

4.1. Efficient integration of
variational equations

In most applications, it is common to integrate the
variational equations together with the equations
of motion they are based on. Thus, an important
prerequisite to obtain correct stability results is the
correct computation of the dynamics of the system
itself. For this reason, we first discuss the prop-
erties of the integrators described in Sec. 3 when
applied to some specific orbits of the FPU-β lattice.
In general, an accuracy estimate of a numerically
obtained orbit of a dynamical system can be given
via monitoring how well the system’s first integrals
(e.g. the total energy, total linear momentum, etc.)

3DOP853 is freely available from http://www.unige.ch/˜hairer/software.html.
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are conserved. For conservative Hamiltonian sys-
tems, like (1), this can be done easily by check-
ing the conservation of the energy H = HN itself.
The absolute value of the relative errors of the total
energy |∆H/H|, for different integrators and step
sizes τ , for a T 4

2 orbit over t = 106 time units are
given in Table 1. For nonsymplectic methods also,
the one-step accuracy δ is mentioned.

Firstly, we focus on the application of the
TM method with the SABA integrator. The cor-
responding results are given in the first four lines
in Table 1. Comparing the energy conservation
between SABA2 and SABA2C, one finds that the
use of the corrector steps significantly improves
|∆H/H| for the same step size of τ = 0.5. This
result can, of course, be explained by the fact that
SABA2 is an integration scheme of order 2, while
SABA2C is of order 4. Reducing the step size for
SABA2C to τ = 0.1 further improves the energy
conservation as expected. We note that this reduc-
tion leads to a linear growth by a factor 5 of the
required CPU time, as expected. Since SABA2C
shows the best performance, we use only this inte-
grator for further investigations.

Comparing the results of SABA2C with the
ones obtained by the nonsymplectic methods
TIDES and DOP853, one finds that both nonsym-
plectic methods need more CPU time in order to
reach the same final value of |∆H/H|. If one com-
putes a mean step size for these algorithms, defined
as the total integration time t(= 106) divided by
the number of accepted steps na, one finds that both

integrators achieve this final energy error by a larger
mean step size, compared to SABA2C, which is
due to the higher orders of these integrators. While
the highest order for DOP853 is fixed to 8, TIDES
uses automatic order selection, which explains the
larger mean time step for the same value of one-step
accuracy δ.

While monitoring energy conservation serves as
a control parameter over the state vector of the sys-
tem itself, it lacks information on how accurately
the corresponding variational equations are solved.
If the stability of certain initial conditions is known,
one can use the theoretically predicted behaviors (5)
of the GALI chaos indicator to estimate the relia-
bility of the numerical computation. Therefore, in
the last column of Table 1, we provide information
on whether the integration was able to identify the
T 4

2 orbit correctly as being a regular orbit lying on
a two-dimensional torus.

The time evolution of GALIk, k = 2, . . . , 8, for
some of the runs of Table 1 is shown in Fig. 1.
From Eq. (5) it is known that GALI2 should be con-
stant for a T 4

2 orbit, while GALI3 and GALI4 should
decrease proportionally to t−2 and t−4 respectively.
A correct characterization is possible by using the
TM method with SABA2 and a step size as large
as τ = 1.0, although the corresponding energy
error |∆H/H| ≈ 10−2, is rather high (see first line
in Table 1). For the nonsymplectic methods, it is
found that δ = 10−5 leads to a similar error in
energy conservation, but is not sufficient for the cor-
rect computation of the GALIs (see the first and

Table 1. Information on the performance of the different numerical methods used for the computation of all the GALIs of
the T 4

2 orbit with initial condition qi = 0.1, pi = 0, 1 ≤ i ≤ 4, of system (1) with N = 4, over t = 106 time units. The given
τ for nonsymplectic methods is computed as a mean step size τ = t/na, where na is the number of accepted steps, while δ
is the one-step accuracy. The absolute value of the relative energy error |∆H/H | at the end of each integration, as well as
the required CPU time for each method are also reported. The last column provides information on whether the computed
GALIs identified the nature of the regular orbit correctly (Y) or not (N) within the time interval t = 106 (see also Fig. 1).

Integrator δ τ Order |∆H/H | CPU Time Correctness

TM-SABA2 1.00 2 6 × 10−2 0 min 03 sec Y

TM-SABA2 0.50 2 2 × 10−3 0 min 06 sec Y

TM-SABA2C 0.50 4 4 × 10−5 0 min 09 sec Y

TM-SABA2C 0.10 4 5 × 10−7 0 min 46 sec Y

TIDES 10−5 0.66 10 4 × 10−2 0 min 45 sec N

TIDES 10−8 0.60 14 1 × 10−5 1 min 14 sec N

TIDES 10−10 0.54 16 2 × 10−7 1 min 37 sec Y

DOP853 10−5 1.32 8 5 × 10−1 0 min 11 sec N

DOP853 10−10 0.25 8 8 × 10−6 0 min 54 sec Y

DOP853 10−11 0.19 8 6 × 10−7 1 min 11 sec Y
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Fig. 1. Time evolution of GALIs for the regular T 4
2 orbit with initial condition qi = 0.1, pi = 0, 1 ≤ i ≤ 4 of system (1)

with N = 4, as computed using nonsymplectic schemes. The results are given as colored curves. The TM method results with
SABA2C and τ = 0.5 are presented by grey-scale curves in the background serving as a reference. These curves are not always
clearly visible as they are overlapped by the colored ones.

third columns of Fig. 1). Decreasing the one-step
accuracy δ improves the accuracy, but the integra-
tions become less and less efficient compared to the
TM integration as the required CPU time grows.
We note that a correct dynamical characterization
of the orbit is possible both for the DOP853 and
TIDES for δ � 10−10.

Using energy conservation as an indicator for
the quality of an integration one could argue that
the difference in CPU time between SABA2C with
τ = 0.1 and DOP853 with δ = 10−10 is not very
significant. While this is true for the T 4

2 orbit,
the difference becomes more pronounced, when the
number of particles N of the FPU-β lattice is
increased. This is evident in Fig. 2 where we plot,
as function of N , the ratio of the required CPU
times between the TM method with SABA2C and
the TIDES (blue curves) and DOP853 (red curves)
integrators for a T N

N/2 regular orbit with initial con-
dition qi = 0.1, pi = 0, 1 ≤ i ≤ N for N = 4, 8,
12 and 20. If after t = 106 time units an error in
energy conservation of |∆H/H| ≈ 10−5 is sufficient,
one could use either SABA2C with τ = 0.5, TIDES
with δ = 10−8 (although for N = 4 the correspond-
ing GALIs do not exhibit the theoretically expected
behavior for the whole time interval), or DOP853
with δ = 10−10 (see Table 1). The ratio of the CPU

time of these runs is given in Fig. 2(a). In Fig. 2(b),
we show a similar comparison when SABA2C with
τ = 0.1, TIDES with δ = 10−10, and DOP853 with
δ = 10−11 are used, which yields |∆H/H| � 10−7 at
the end of the integration. In this case, the GALIs
computed by these methods show the time evolu-
tion predicted in Eq. (5).

Figure 2 shows that the efficiency of the TM
method improves with increasing N when compared
to the nonsymplectic methods used in this study.
While the ratio is 2 between the CPU times of
SABA2C and TIDES for N = 4 in Fig. 2(b) it
increases up to 7 when using N = 20 particles in
the FPU-β lattice. The ratios are generally smaller
when comparing the TM method with DOP853,
but also here a growing trend can be observed. The
results become even more pronounced when a larger
error in energy conservation is acceptable, as it is
shown in Fig. 2(a).

When analyzing dynamical systems one very
often has to follow a trajectory for long time inter-
vals to determine the behavior of a specific initial
condition correctly. Especially for weakly chaotic
orbits, differences to regular orbits are shown only
in the late evolution of chaos indicators. In such
investigations the TM method also proves to be
superior compared to other techniques. As an
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Fig. 2. The ratio of required CPU time between integrations using the TM method with SABA2C and the TIDES (blue
curves) and DOP853 (red curves) integrators for a T N

N/2 regular orbit of Hamiltonian (1) with initial condition qi = 0.1,

pi = 0, 1 ≤ i ≤ N for N = 4, 8, 12 and 20. Comparisons are performed between (a) TM method with step size τ = 0.5, TIDES
with δ = 10−8, and DOP853 with δ = 10−10, and (b) TM method with τ = 0.1, TIDES with δ = 10−10, and DOP853 with
δ = 10−11.

example, we show in Fig. 3 the time evolution of
GALIs for a regular T 12

6 orbit with initial condition
qi = 0.1, pi = 0, 1 ≤ i ≤ 12, for system (1) with
N = 12, over t = 108 time units. Further informa-
tion on these runs are given in Table 2.

From Table 2 and Fig. 3, it is seen that for
the nonsymplectic integrators a one-step accuracy

of δ = 10−10 is not sufficient for a correct identifica-
tion of the regular T 12

6 orbit. Results obtained both
by the TIDES and the DOP853 integrators show
a deviation from the theoretically predicted behav-
iors (5) after t = 107 (see the first and third columns
of Fig. 3). To obtain the correct behavior of GALIs
over the whole integration interval, it is necessary
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Fig. 3. Time evolution of GALIs for a regular T 12
6 orbit with initial condition qi = 0.1, pi = 0, 1 ≤ i ≤ 12 of system (1) with

N = 12, as computed using nonsymplectic schemes. The results are given as colored curves, while the TM method results with
SABA2C and τ = 0.1 are given in grey-scale in the background as reference.
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Table 2. Table similar to Table 1 containing information on the performance of the different numerical methods used for the
computation of all the GALIs of the T 12

6 orbit with initial condition qi = 0.1, pi = 0, 1 ≤ i ≤ 12, of system (1) with N = 12,
over t = 108 time units (see also Fig. 3).

Integrator δ τ Order |∆H/H | CPU Time Correctness

TM-SABA2C 0.50 4 3 × 10−4 01 h 39 min 09 sec Y

TM-SABA2C 0.10 4 5 × 10−7 08 h 02 min 17 sec Y

TIDES 10−10 0.54 16 1 × 10−6 31 h 04min 30 sec N

TIDES 10−12 0.51 22 1 × 10−7 37 h 54min 43 sec Y

DOP853 10−10 0.24 8 5 × 10−4 12 h 45min 07 sec N

DOP853 10−12 0.14 8 3 × 10−6 22 h 30min 19 sec Y

to decrease the one-step accuracy to δ = 10−12 (see
the second and fourth columns of Fig. 3). We note
that this decrease in δ naturally results in a signifi-
cant increase in CPU time. In contrast, the GALIs
obtained via the TM method with τ = 0.5 require
significantly less CPU time, and show the theoret-
ically expected behaviors up to t = 108, although
the relative energy error is |∆H/H| ≈ 10−4.

While the error in energy conservation |∆H/H|
grows with time for nonsymplectic integrators, it
remains bounded for symplectic integrators, as can
be exemplarily seen in Fig. 4. Thus, in case it is
necessary to integrate beyond t = 108, one has to
further decrease δ for the nonsymplectic methods,
in order to achieve the same final |∆H/H|. This, of
course, would result in a further increase in the ratio
values of the CPU time required by the nonsymplec-
tic methods as compared to the TM technique.
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Fig. 4. Time evolution of the absolute value of the relative
error in energy conservation for the T 12

6 orbit with initial
condition qi = 0.1, pi = 0, 1 ≤ i ≤ 12, of Hamiltonian (1)
with N = 12. The symplectic routine SABA2C uses a step
size of τ = 0.1, while the nonsymplectic methods required a
one-step accuracy of δ = 10−12 (see also Table 2).

4.2. Searching for motion on
low-dimensional tori

One of the advantages of the GALI method is its
capability to identify motion on low-dimensional
tori. For a regular orbit the largest order k of its
GALIs that eventually remains constant determines
the dimension of the torus on which the motion
occurs [see Eq. (5)]. This ability was verified in
[Skokos et al., 2008; Bountis et al., 2009], where
some particular orbits on low-dimensional tori were
considered.

Since the TM method provides reliable evalua-
tions of the GALIs even for relatively large integra-
tion steps, and therefore requires little CPU time,
we applied this technique to perform a more global
investigation of the FPU-β lattice, aiming to trace
the location of low-dimensional tori. In particu-
lar, we consider the Hamiltonian system (1) with
N = 4, for which regular motion can occur on an
s-dimensional torus with s = 2, 3, 4. According to
Eq. (5) the corresponding GALIs of order k ≤ s
will be constant, while the remaining ones will tend
to zero following particular power laws. Thus, in
order to locate low-dimensional tori we compute
the GALIk, k = 2, 3, 4 in the subspace (q3, q4) of
the system’s phase space, considering orbits with
initial conditions q1 = q2 = 0.1, p1 = p2 = p3 = 0,
while p4 is computed to keep the total energy H
constant at H = 0.010075.

Since the constant final values of GALIk, k =
2, . . . , s, decrease with increasing order k (see for
example the GALIs with 2 ≤ k ≤ 6 in Fig. 3),
we chose to “normalize” the values of GALIk, k =
2, 3, 4 of each individual initial condition, by divid-
ing them by the largest GALIk value, max(GALIk),
obtained from all studied orbits. Thus, in Fig. 5 we
colored each initial condition according to its final
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Fig. 5. Regions of different gk (13) values, k = 2, 3, 4, on the (q3, q4) plane of the Hamiltonian system (1) with N = 4. Each
initial condition is integrated by the TM method with SABA2C and τ = 0.5 up to t = 106, and colored according to its
final (a) g2, (b) g3, and (c) g4 value, while white regions correspond to forbidden initial conditions. Three particular initial
conditions of regular T 4

2, T 4
3 and T 4

4 orbits are marked by a triangle, a square and a circle, respectively.

“normalized GALIk” value

gk =
GALIk

max(GALIk)
. (13)

In each panel of Fig. 5, large gk values (colored
in yellow or in light red) correspond to initial con-
ditions whose GALIk eventually stabilizes to con-
stant, nonzero values. On the other hand, darker
regions correspond to small gk values, which result
from power law decays of GALIs.

Consequently, motion on two-dimensional tori,
which corresponds to large final GALI2 values and
small final GALI3 and GALI4 values, should be
located in areas of the phase space colored in yellow
or light red in Fig. 5(a), and in black in Figs. 5(b)
and 5(c). A region of the phase space with these
characteristics is, for example, located in the upper

border of the colored areas of Fig. 5. A particular
initial condition with q3 = 0.106, q4 = 0.0996 in this
region is denoted by a triangle in Fig. 5. This orbit
is indeed a T 4

2 regular orbit as we see from the evo-
lution of its GALIs shown in Fig. 6(a). In a similar
way, a T 4

3 orbit should be located in regions colored
in black only in the g4 plot of Fig. 5(c). An orbit of
this type is the one with q3 = 0.085109, q4 = 0.054
denoted by a square in Fig. 5, which actually evolves
on a three-dimensional torus, as only its GALI2
and GALI3 remain constant [Fig. 6(b)]. Finally, the
orbit with q3 = 0.025, q4 = 0 (denoted by a circle in
Fig. 5) inside a region of the phase space colored in
yellow or light red in all panels of Fig. 5, is a regular
orbit on a four-dimensional torus and its GALI2,
GALI3 and GALI4 remain constant [Fig. 6(c)]. It
is worth noting, that chaotic motion would lead to
very small GALIk and gk values, since all GALIs
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Fig. 6. The time evolution of GALIs for regular orbits lying on a (a) two-dimensional torus, (b) three-dimensional torus,
and (c) four-dimensional torus of the Hamiltonian system (1) with N = 4. The initial conditions of these orbits are marked
respectively by a triangle, a square and a circle in Fig. 5.
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would tend to zero exponentially, and consequently
would correspond to regions colored in black in
all panels of Fig. 5. Thus, chaotic motion can be
easily distinguished from regular motion on low-
dimensional tori.

From the results of Figs. 5 and 6, it becomes
evident that the comparison of color plots of “nor-
malized GALIk” values can facilitate the tracing of
low-dimensional tori. The construction of such plots
becomes a very demanding computational task,
especially for high-dimensional systems. Thus, the
application of the TM method for obtaining such
results becomes imperative, since the required com-
putations can be performed very efficiently by this
method.

5. Summary and Conclusions

We compared different numerical techniques for
the integration of variational equations of multidi-
mensional Hamiltonian systems. In particular, we
considered the TM method, which uses symplectic
integrators for the realization of this task, as well as
nonsymplectic algorithms, like the general-purpose
Runge–Kutta integrator DOP853, and the TIDES
algorithm, which relies on Taylor series expansion
techniques. These methods were applied to the ND
Hamiltonian system (1), the FPU-β lattice, with N
varying from N = 4 to N = 20.

We used the numerically obtained solutions of
the variational equations for the computation of the
GALI chaos indicators. The accurate reproduction
of theoretically known behaviors of GALIs was used
as a measure of reliability of the numerical tech-
niques tested. In addition, the CPU time required
by each method in order to achieve accurate results,
was taken into account for the characterization of
the efficiency of these algorithms.

The TM method exhibited the best numerical
performance in all our simulations, both in accu-
racy and speed. More specifically, we found that
the ratio of the CPU time required by the TIDES
and DOP853 algorithms, with respect to the TM
method, for correctly characterizing the nature of
orbits, increased with increasing N (Fig. 2). Thus,
the TM method should be preferred over the other
two techniques, especially for studies of multidimen-
sional systems.

A feature of the TM method, which is of sig-
nificant practical importance, is that it succeeds
in finding the correct GALI behavior, and conse-
quently determines the nature of orbits correctly,

even when large integration steps are used, despite
the fact that in these cases the energy accuracy
is rather low. Therefore, the application of the
TM method allows the efficient investigation of the
dynamical properties of a large number of initial
conditions in feasible CPU times. As an example,
we showed in Sec. 4.2 how the TM method can
exploit the properties of GALI to efficiently find the
location of low-dimensional tori in the phase space.
Possible applications of this approach could be the
tracing of quasiperiodic motion in multidimensional
systems, when only a few degrees of freedom are
excited.
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